UPSC ISS Syllabus – Updated Syllabus

UPSC ISS Syllabus: A combined competitive examination for recruitment to Junior Time Scale of the Indian Statistical Service will be held by the Union Public Service Commission commencing from 16th October 2020 in accordance with the Rules published by the Ministry of Statistics & Programme Implementation in the Gazette of India dated the 10th June 2020. For detailed information about UPSC ISS Syllabus, please go through this article.

upsc iss syllabus 2020

UPSC ISS Syllabus

The examination shall be conducted according to the following plan:

  • Part I-Written examination carrying a maximum of 1000 marks in the subjects.
  • Part II-Viva voice of such candidates as may be called by the Commission carrying a maximum of 200 marks.

The standard of papers in General English and General Studies will be such as may be expected of a graduate of an Indian University. The standard of papers in the other subjects will be that of the Master’s degree examination of an Indian University in the relevant disciplines. The candidates will be expected to illustrate the theory by facts, and to analyze problems with the help of theory. They will be expected to be particularly conversant with Indian problems in the field(s) of Statistics.


Candidates will be required to write an essay in English. Other questions will be designed to test their understanding of English and workmanlike use of words. Passages will usually be set for summary or precis.


General knowledge including knowledge of current events and of such matters of everyday observation and experience in their scientific aspects as may be expected of an educated person who has not made a special study of any scientific subject. The paper will also include questions on Indian Polity including the political system and the Constitution of India, History of India and Geography of nature which a candidate should be able to answer without special study.


Probability(UPSC ISS Syllabus)

Classical and axiomatic definitions of Probability and consequences. Law of total probability, Conditional probability, Bayes’ theorem, and applications. Discrete and continuous random variables. Distribution functions and their properties.

Standard discrete and continuous probability distributions – Bernoulli, Uniform, Binomial, Poisson, Geometric, Rectangular, Exponential, Normal, Cauchy, Hypergeometric, Multinomial, Laplace, Negative binomial, Beta, Gamma, Lognormal. Random vectors, Joint and marginal distributions, conditional distributions, Distributions of functions of random variables. Modes of convergences of sequences of random variables – in distribution, in probability, with probability one and in mean square. Mathematical expectation and conditional expectation. Characteristic function, moment and probability generating functions, Inversion, uniqueness, and continuity theorems. Borel 0-1 law, Kolmogorov’s 0-1 law. Tchebycheff’s and Kolmogorov’s inequalities. Laws of large numbers and central limit theorems for independent variables.

Statistical Methods

UPSC ISS Syllabus

Collection, compilation, and presentation of data, charts, diagrams, and histograms. Frequency distribution. Measures of location, dispersion, skewness, and kurtosis. Bivariate and multivariate data. Association and contingency. Curve fitting and orthogonal polynomials. Bivariate normal distribution. Regression-linear, polynomial. Distribution of the correlation coefficient, Partial and multiple correlations, Intraclass correlation, Correlation ratio.

Standard errors and large sample tests. Sampling distributions of sample mean, sample variance, t, chi-square, and F; tests of significance based on them, Small sample tests. Non-parametric tests-Goodness of fit, sign, median, run, Wilcoxon, Mann-Whitney, WaldWolfowitz, and Kolmogorov-Smirnov. Order statistics-minimum, maximum, range, and median. Concept of Asymptotic relative efficiency.

Numerical Analysis

UPSC ISS Syllabus

Finite differences of different orders: , E and D operators, factorial representation of a polynomial, separation of symbols, sub-division of intervals, differences of zero.

Concept of interpolation and extrapolation: Newton Gregory’s forward and backward interpolation formulae for equal intervals, divided differences and their properties, Newton’s the formula for divided difference, Lagrange’s formula for unequal intervals, the central difference formula due to Gauss, Sterling, and Bessel, the concept of error terms in interpolation formula. Inverse interpolation: Different methods of inverse interpolation.

Numerical differentiation: Trapezoidal, Simpson’s one-third and three-eight rule and Waddles rule.

Numerical differentiation: Trapezoidal, Simpson’s one-third and three-eight rule and Waddles rule.

Numerical solutions of differential equations: Euler’s Method, Milne’s Method, Picard’s Method, and Runge-Kutta Method.

Computer application and Data Processing

UPSC ISS Syllabus

Basics of Computer: Operations of a computer, Different units of a computer system like the central processing unit, memory unit, arithmetic and logical unit, an input unit, output unit, etc., Hardware including different types of input, output and peripheral devices, Software, system and application software, number systems, Operating systems, packages and utilities, Low and High-level languages, Compiler, Assembler, Memory – RAM, ROM, a unit of computer memory (bits, bytes, etc.), Network – LAN, WAN, internet, intranet, basics of computer security, virus, antivirus, firewall, spyware, malware, etc.

Basics of Programming: Algorithm, Flowchart, Data, Information, Database, an overview of different programming languages, frontend and backend of a project, variables, control structures, arrays, and their usages, functions, modules, loops, conditional statements, exceptions, debugging and related concepts.


UPSC ISS Syllabus

Linear Models: Theory of linear estimation, Gauss-Markov linear models, estimable functions, error and estimation space, normal equations and least square estimators, estimation of error variance, estimation with correlated observations, properties of least square estimators, the generalized inverse of a matrix and solution of normal equations, variances, and covariances of least square estimators. One way and two-way classifications, fixed, random, and mixed-effects models. Analysis of variance (two-way classification only), multiple comparison tests due to Tukey, Scheffe, and Student-Newmann-Keul-Duncan.

Statistical Inference and Hypothesis Testing: Characteristics of the good estimator. Estimation methods of maximum likelihood, minimum chi-square, moments, and least squares. Optimal properties of maximum likelihood
estimators. Minimum variance unbiased estimators. Minimum variance bound estimators. Cramer-Rao inequality. Bhattacharya bounds. Sufficient estimator. factorization theorem. Complete statistics. Rao-Blackwell theorem. Confidence interval estimation. Optimum confidence bounds. Resampling, Bootstrap, and Jackknife. Hypothesis testing: Simple and composite hypotheses. Two kinds of error. Critical region. Different types of critical regions and similar regions. Power function. Most powerful and uniformly most powerful tests. Neyman-Pearson fundamental lemma. Unbiased test. Randomized test. Likelihood ratio test. Wald’s SPRT, OC, and ASN functions. Elements of
decision theory.

Official Statistics: National and International official statistical system Official Statistics: (a) Need, Uses, Users, Reliability, Relevance, Limitations, Transparency, its visibility (b) Compilation, Collection, Processing, Analysis and Dissemination, Agencies Involved, Methods.


UPSC ISS Syllabus

Sampling Techniques

Concept of population and sample, need for sampling, complete enumeration versus sampling, basic concepts in sampling, sampling and Non-sampling error, Methodologies in sample surveys (questionnaires, sampling design, and methods followed in field investigation) by NSSO.

Subjective or purposive sampling, probability sampling or random sampling, simple random sampling with and without replacement, estimation of population mean, population proportions, and their standard errors. Stratified random sampling, proportional and optimum allocation, comparison with simple random sampling for fixed sample size. Covariance and Variance Function.

Ratio, product and regression methods of estimation, estimation of population mean, evaluation of Bias, and Variance to the first order of approximation, comparison with simple random sampling.

Systematic sampling (when population size (N) is an integer multiple of sampling size (n)). Estimation of population mean and standard error of this estimate, comparison with simple random sampling.

Sampling with probability proportional to size (with and without replacement method), Des, Raj, and Das estimators for n=2, Horvitz-Thomson’s estimator Equal size cluster sampling: estimators of population mean and total and their standard errors, comparison of cluster sampling with SRS in terms of an intra-class correlation coefficient.

Concept of multistage sampling and its application, two-stage sampling with an equal number of second stage units, estimation of population mean, and total.Double sampling in the ratio and regression methods of estimation.
Concept of Interpenetrating sub-sampling.


UPSC ISS Syllabus

Nature of econometrics, the general linear model (GLM) and its extensions, ordinary least squares (OLS) estimation and prediction, generalized least squares (GLS) estimation and prediction, heteroscedastic disturbances, pure and mixed estimation.

Autocorrelation, its consequences, and tests. Theil BLUS procedure, estimation, and prediction, multi-collinearity problem, its implications, and tools for handling the problem, ridge regression.

Linear regression and stochastic regression, instrumental variable estimation, errors in variables, autoregressive linear regression, lagged variables, distributed lag models, estimation of lags by OLS method, Koyck’s geometric lag model.

Simultaneous linear equations model and its generalization, identification problem, restrictions on structural parameters, rank and order conditions. Estimation in simultaneous equations model, recursive systems, 2 SLS estimators, limited information estimators, k-class estimators, 3 SLS estimators, full information maximum likelihood method, prediction, and simultaneous confidence intervals.

Applied Statistics

UPSC ISS Syllabus

Index Numbers: Price relatives and quantity or volume relatives, Link and chain relatives composition of index numbers; Laspeyre’s, Paasche’s’, Marshal Edgeworth and Fisher index numbers; chain base index number, tests for index number, Construction of index numbers of wholesale and consumer prices, Income distribution-Pareto, and Engel curves, Concentration curve, Methods of estimating national income, Inter-sectoral flows, Interindustry table, Role of CSO. Demand Analysis Time Series Analysis: Economic time series, different components, illustration, additive and multiplicative models, determination of trend, seasonal and cyclical fluctuations. Time-series as discrete parameter stochastic process, autocovariance, and autocorrelation functions and their properties.

Exploratory time Series analysis, tests for trend and seasonality, exponential and moving average smoothing. Holt and Winters smoothing, forecasting based on smoothing. A detailed study of the stationary processes: (1) moving average (MA), (2) autoregressive (AR), (3) ARMA, and (4) AR integrated MA (ARIMA) models. Box-Jenkins models, choice of AR, and MA periods. Discussion (without proof) of estimation of mean, autocovariance, and autocorrelation functions under large sample theory, estimation of ARIMA model parameters. Spectral analysis of the weakly stationary process, periodogram and correlogram analyses, computations based on Fourier transform.


(Equal number of questions i.e. 50% weightage from all the subsections below and
candidates have to choose any two subsections and answer)

Operations Research and Reliability

Definition and Scope of Operations Research: phases in Operation Research, models and their solutions, decision-making under uncertainty and risk, use of different criteria, sensitivity analysis. Transportation and assignment problems. Bellman’s principle of optimality, general formulation, computational methods, and application of dynamic programming to LPP. Decision-making in the face of competition, two-person games, pure and mixed strategies, the existence of solution and uniqueness of value in zero-sum games, finding solutions in 2×2,
2xm and mxn games.

Analytical structure of inventory problems, EOQ formula of Harris, its sensitivity analysis, and extensions allowing quantity discounts and shortages. Multi-item inventory subject to constraints. Models with random demand, the static risk model. P and Q- systems with constant and random lead times. Queuing models – specification and effectiveness measures. Steady-state solutions of M/M/1 and M/M/c models with associated distributions of queue-length and waiting time. M/G/1 queue and Pollazcek-Khinchine result.

Sequencing and scheduling problems. 2-machine n-job and 3-machine n-job problems with identical machine sequence for all jobs Branch and Bound method for solving traveling salesman problem. Replacement problems – Block and age replacement policies. PERT and CPM – basic concepts. Probability of project completion.
Reliability concepts and measures, components and systems, coherent systems, reliability of coherent systems. Life-distributions, reliability function, hazard rate, common univariate life distributions – exponential, Weibull, gamma, etc. Bivariate exponential distributions. Estimation of parameters and tests in these models.

Notions of aging – IFR, IFRA, NBU, DMRL, and NBUE classes and their duals. Loss of memory property of the exponential distribution. Reliability estimation based on failure times in variously censored life-tests and in tests
with the replacement of failed items. Stress-strength reliability and its estimation.

Demography and Vital Statistics

Sources of demographic data, census, registration, ad-hoc surveys, Hospital records, Demographic profiles of the Indian Census.Complete life table and its main features, Uses of life table. Markham’s and Gompertz curves. National life tables. UN model life tables. Abridged life tables. Stable and stationary populations. Measurement of Fertility: Crude birth rate, General fertility rate, Age-specific birth rate, Total fertility rate, Gross reproduction rate, Net reproduction rate.

Measurement of Mortality: Crude death rate, Standardized death rates, Age-specific death rates, Infant Mortality rate, the Death rate by cause. Internal migration and its measurement, migration models, the concept of international migration. Net migration. International and postcensal estimates. Projection method including logistic curve fitting. Decennial population census in India.

Survival Analysis and Clinical Trial

Concept of time, order and random censoring, likelihood in the distributions – exponential, gamma, Weibull, lognormal, Pareto, Linear failure rate, inference for this distribution. Life tables, failure rate, mean residual life, and their elementary classes and their properties.

Estimation of survival function – actuarial estimator, Kaplan – Meier estimator, estimation under the assumption of IFR/DFR, tests of exponentiality against non-parametric classes, total time on test.

Two sample problem – Gehan test, log-rank test. Semi-parametric regression for failure rate – Cox’s proportional hazards model with one and several covariates, rank test for the regression coefficient. Competing risk model, parametric and non-parametric inference for this model. Introduction to clinical trials: the need and ethics of clinical trials, bias, and random error in clinical studies, the conduct of clinical trials, an overview of Phase I – IV trials, multicenter trials.

Quality Control

Statistical process and product control: Quality of a product, need for quality control, the basic concept of process control, process capability, and product control, general theory of control charts, causes of variation in quality, control limits, sub grouping summary of out of control criteria, charts for attributes p chart, np chart, c-chart, V chart, charts for variables: R, ( X ,R), (X ,σ) charts.
Basic concepts of process monitoring and control; process capability and process optimization. General theory and review of control charts for attribute and variable data; O.C. and A.R.L. of control charts; control by gauging; moving average and exponentially weighted moving average charts; Cu-Sum charts using V-masks and decision intervals;
Economic design of the X-bar chart.

Acceptance sampling plans for attributes inspection; single and double sampling plans and their properties; plans for inspection by variables for the one-sided and two-sided specifications.

Multivariate Analysis

Multivariate normal distribution and its properties. Random sampling from the multivariate normal distribution. Maximum likelihood estimators of parameters, distribution of the sample mean vector.

Wishart matrix – its distribution and properties, distribution of sample generalized variance, null and non-null distribution of multiple correlation coefficients. Hotelling’s T2 and its sampling distribution, application in test on mean vector for one and more multivariate normal population, and also on equality of components of a mean vector
in a multivariate normal population. Classification problem: Standards of good classification, the procedure of classification based on multivariate normal distributions. Principal components, dimension reduction, canonical variates, and canonical correlation – definition, use, estimation, and computation.

Design and Analysis of Experiments

Analysis of variance for one way and two-way classifications Need for the design of experiments, basic principles of experimental design (randomization, replication, and local control), complete analysis and layout of the completely randomized design, randomized block design, and Latin square design, Missing plot technique. Split Plot Design and Strip Plot Design.
Factorial experiments and confounding in 2n and 3n experiments. Analysis of covariance. Analysis of non-orthogonal data. Analysis of missing data.

Computing with C and R

Basics of C: Components of C language, the structure of a C program, Data type, basic data types, Enumerated data types, Derived data types, variable declaration, Local, Global, Parametric variables, Assignment of Variables, Numeric, Character, Real and String constants, Arithmetic, Relation and Logical operators, Assignment operators, Increment and decrement operators, conditional operators, Bitwise operators, Type modifiers and expressions, writing and interpreting expressions, using expressions in statements. Basic input/output.
Control statements: conditional statements, if-else, nesting of if-else, else if ladder, switch statements, loops in c, for, while do-while loops, break, continue, exit ( ), goto and label declarations, One dimensional two dimensional and multidimensional arrays. Storage classes: Automatic variables, External variables, Static variables, Scope and lifetime of declarations.

For more details visit the official site.


Sibaram Sannigrahi

Hi, I am Sibaram Sannigrahi, a content writer at I have experience of more than two years in the education and career field.